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Structure-Factor Relations and Phase Determination 
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(Received 4 October 1947 and in revised form 7 January 1948) 

The method  of inequalities, begun by Harker  & Kasper,  is extended and new types of inequalit ies are 
established for the structure-factors of a centro-symmetr ic  crystal.  The techniques for obtaining 
relations are described and examples are given of inequalities derived by each of the various methods.  

1. Formulation of  the problem 

1.1. The main purpose of this paper is to extend the 
results of Harker & Kasper (1948). We shall keep to 
their notation for simplicity, but shall recapitulate an 
explanation of its significance in § 1.3. In § 3 we shall 
derive several large classes of inequalities satisfied by 
the structure-factors and, in practical cases, these will 
often be sufficient to determine their phases. In this 
paper we shall consider only the case of a centro- 
symmetric structure, but  the method can be readily 
adapted to deal with any other symmetry elements. 
The general idea is to make use of the symmetry to 
obtain appropriate analytic forms for the structure- 
factors in terms of the (unknown) atomic co-ordinates, 
and then to apply to these forms some of the standard 
inequalities of mathematical analysis. Harker & 
Kasper have shown how to use the Schwarz Inequali ty 
in this way. For our purpose we shall be using a much 
wider range of inequalities. 

We shall discuss in § 4 some of the general implica- 
tions of the method as well as possible extensions. 

1.2. We shall assume that  the structure in question 
has a centre of symmetry at the origin and that  we can 
approximate to the atoms by points of appropriate 
scattering power. Then the electron-density function 
is given by 

p (x, y, z) = ~ Fak z cos 27r (hx + ky + lz), (1-1) 
hkl= - o o  

N 
where Fhkz = Z t(¢, Jakt cos 2~ (hx~+lcy~+lzj), (1-2) 

j--1 

(and in particular is real). The summation is taken over 
all the atoms of the basic cell, N in number; (xj, yj, zj) 
are the unknown co-ordinates of the j t h  atom; and 
f~z is its scattering power in the (hkl) direction. 

We now introduce the assumption that  there exists 
a function fhkz of hkl, and positive numbers Z~, de- 
pending on j alone, such that  

f ~  = Z~fhk~. (1--3) 

N 
Put  ~ Zj = Z, (1-4) 

j=l  

and Zi/Z = ni; (1-5) 

then, by (1-2), (1-3) and (1-5), 

N 
Fakl =fhkz 3", Zj cos 27r (hx¢ + ky~ + lzj) 

j=l  

N 
= Zfhkl Y, n~ cos 27r (hx~ + lcyj + lz~). 

j=l  
We define 

(1-6) 

(1-7) 

and so 
N 

Phk~ = ~ n~. cos 27r (hx~ + ky~ + lz¢), 
j=l  

(1-8) 

where, by (1-4) and (1-5), the n~'s are positive and 

N 
nj--~ 1. 

j = l  

/~hkZ aS defined by (1-7) is a simplified designation for 
~Phkz aS used in the paper of Harker  & Kasper (defined 
in their equation (12)). 

In practice we observe the values of [ Fh~ z [ (or at 
least some of them), but we cannot determine directly 
from observation whether Fhkz is positive or negative. 
By (1-7) F~kz has the same sign as Phk~ and we shall be 
interested in methods for determining the sign of the 
latter. 

1.3. I t  is desirable at this point to consider the 
significance of (1-3). I t  amounts to the assumption 
tha t  the atomic scattering curves of the individual 
atoms of the crystal are proportional to one a,'.other. 
This will certainly be accurate if the atoms do not 
differ from each other ' too much '. In particular it will 
be a good approximation for organic structures con- 
taining only carbon, nitrogen, oxygen and hydrogen, 
since the scattering power of hydrogen may be neg- 
lected. The approximation is most likely to break down 
for structures in which a few atoms are much heavier 
than the others, but it is precisely in these cases tha t  
we can get a good idea of many of the signs by other 
methods. Moreover, a close examination of the proofs 
in § 3 reveals tha t  we never in fact use the assumption 
(1-3) to the full. We do not assume that  the various 
atomic scattering curves are proportional, but  only tha t  
the sets of values they take at a small number of 
different points are so proportional. However, it seems 
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worth while to make the full assumption since it greatly 
simplifies the notation. And in all the applications we 
have made so far it has been fully justified by the 
results. 

2. Mathematical preliminaries 

2.1. We shall be basing our arguments on some 
results from the field of pure analysis and we quote 
them here. 

2.2. TheoremA (H61der's Inequality). Ifa~, a~,... ,  a~, 
b~, b~., ..., b~ are real or complex numbers and p, q any 
two real numbers such that  1/p + 1/q = 1, then 

n ar [:pll/p ]l/q 

with equality if and only if there exist numbers )~, 
(not both zero) such that  2a~ +/~br = 0 (r = 1, 2, ..., n). 

2-3. TheoremB. Supposethatxx, x 2, ..., x~areany 
n positive real numbers and ~1, ~ ,  ---, ~ are n non- 

negative real numbers such that  ~] ~ =  1. Denote 
r = l  

r~l~X:) byM~.  Then, f f 0 < ~ < f l ,  

M. < (2-2) 

with equality if, and only if, either the Xr'S are all equal 
or some ~r -1 .  

2.4. Theorem C. Under the conditions of Theorem 

B, log ( ~ ~x~) (i.e. ~ log M~) is a convex function of ~. r=~ 

A function f (a) is said to be convex if it is continuous 
and the curve y = f  (~) has the property that  the chord 
joining any two of its points lies entirely above the 
corresponding arc. This may be expressed analytically 
as follows: If  ~x, a~. are any two values of the inde- 
pendent variable, and tx, t~ any two positive numbers 
whatever, 

f ~ t ~  / <~t---~ [txf (,~)+t~.f (,~.)]. (2-3) 

2.5. Theorem D. IfO~<xr~<l, ~r~>O ( r = l ,  2, ..., n) 
and ~ < fl, then n n 

Z ~rx~> Z ~rx~. (2-4) 
r = l  r = l  

Finally, we shall have occasion to use a special ease 
of Theorem A when p = q = 2 ,  and so we state it as 
a separate result. 

2-6. Theorem A' (Cauchy's Inequality). Under the 
conditions of Theorem A, 

r = l  r = l  r = l  

with the same condition for equality as in Theorem A. 
The reader is referred to the book of Hardy, Little- 

wood & Pblya (1934) for proofs of the first three 
theorems. We merely remark here that  Theorem B is 
deducible from Theorem A and Theorem C from 

Theorem B. To see Theorem D we need only observe 

that  ¢ >i x~ i> 0 (r = 1, 2, ..., n), 

and so ~rx~ 1> ~x~, 

and the theorem follows by summing this last in- 
equality. 

A 

3. Inequalities for the F values 
3"1. Implication~ of Theorem B. For a given H we 

have 
N 

P~/= ~ n¢ cos 0¢, where 0j = 2~ (hxj + ky¢ + lz¢). 
i = 1  

Here H stands for the triple suffix (hkl); nH then 
indicates (nh.nk.nl) while H + H', H - H ' ,  etc. have their 
obvious meanings. 

By Theorem B above we know that,  if 0 < a < fl, 

and so, a fortiori, 

Z n j c ° s  ~0~ < n¢lcos0~.[~ . (3-1) 
i=1 i 

Now suppose that  fl is an even positive integer and ~ any 
integer less than ft. In these circumstances we can drop 
the [] sign in the right-hand side of (3-1) and so 

I N  I1/, I N  1/~, nj cos a 0j ~< ~ nj cos~ 0~ (3-2) 
i = 1  i = 1  

where, of course, the roots in this inequality are both 
taken positive. Now cos ~ 0¢ can be expressed as a linear 
combination of cosines of multiples of 0¢ and we make 
use of the fact that  

N N 
nj cos nO¢= ~ nj cos 2~rn (hx¢ + ky~ + lzj) 

i = 1  i = 1  

-" P n H  " 

(i) We take as the simplest'case e = 1, fl = 2. This gives 

n j  cos  0j ~< n~ cos  2 0 5 
i = 1  

N 
i.e. / ~  ~< ~ nj cos 2 0j 

i - -1  
N 

~< ½ ~] n~ (1 + cos 20~) 
i = 1  

,.<½ (1 +P~H)- (3-3) 

This inequality was obtained by Harker & Kasper 
(1948). I t  may sometimes be used to determine the sign 
of F ~ .  For example, if I P~ ]=0"8 and I P~H [=0"5, 
we have from (3-3) 

0.64 ~< ½ (1 +_ 0.5). 

But this is satisfied only ff we take the + sign, i.e. 
P ~  = Jr 0.5. On the other hand, no useful determina- 
tion is obtained ff [ PHI <<- ½, ] P ~  [=  ½" 
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(ii) I f  we take ~ = 3, fl = 4, we get  

i.e. n~. 
j=l 4 

~< n~. 
j=l 8 

1 + 
i.e. I + I * .< (3-4) 

I f  we already know some of the signs, we may  use (3-4) 
to determine others. 

(iii) Taking ~ = 1, fl = 4, we get 

' ~H ' <~ E~lH'4-4~2H'4- (3-5) 

i.e. ~ ~<~ ( ~ , ,  + 4 ~ ,  +3) .  (3-6) 

I f  ~2H is known to be negative and ~H is not negligibly 
small, (3-6) may  give a strong inequal i ty  fo r  ~4H which 
might  well determine its sign. 

Clearly by  varying ~¢ and fl this method can be made 
to yield a large number  of inequalities. These will all 
have some features in common. The _P's on the greater 
side will always have suffixes which are even mult iples 
of H, and the highest mult iple of H occurring as a 
suffix on the greater side will be greater than  tha t  on 
the smaller side. 

3.2. Implications of Theorem C. In this paragraph 
we are interested in the implications of Theorem C. 
We write M~ for 

cos0  F 
i=1  

and Theorem C tells us tha t  ~ log  M~ is a convex 
funct ion of e. Let ~1, ~ be any two positive numbers  
such that/~1 + ~ .  = 1 and e, fl any  two positive numbers  
at all. Then the convexity property can be stated as 

(txt~+/x~fl) log Mt,,a.t,,~ < ~xa log Ma+lx~fl log M~, 

(3-7) 

i.e. ~t¢~, ~ + ~  .< M ~, ~ M ~  (3-8) 

We now face the same sort of difficulty as tha t  which 
l imited us in § 3.1. We wish to get rid of the ][ sign in 
the definition of the Ma, etc. so as to be able to express 
everything in terms of the ~ ' s .  On the left-hand side 
of (3-8) we m a y  in fact just  ignore the absolute value 
sign, a step which can only s trengthen the inequali ty.  
However, we can deal with the r ight-hand side only if  
~¢ and fl are both even integers. For example,  take 

= 2, fl = 4,/x~ = / ~  = ½. Then 

M~ ~< M~ M~, 
and so, afortiori, 

E n~. cos ~ 0j n~. cos ~ 0,. n~ cos ~ 0j . 
l= t  i i=~ 

By the same sort of a rgument  as tha t  used above, we 
get 

i .e.  

I 2. (3-9) 

By taking different values of/x 1 , P-2, e, fi we can get 
a whole range of similar inequalities; these will all be 
subject to the l imitat ions described at the end of § 3.1. 

3"3. Implications of Theorem D. We now consider 
Theorem D. I t  again follows from this theorem that ,  
i f a < f l ,  

N N 
E n~l eos 0¢ I~> E n~l eos 0~. I~. (3-10) 

1=1 j = l  

As before, to make use of (3-10) we must  assume tha t  
is an even integer. Taking ~ = 2, fl = 3, we get 

I ~ 3 H + 3 ~  ] < 2  (1 +~2H). (3--11) 

Here again we can get a whole class of inequali t ies by 
varying a and ft. In these inequalit ies an H value and 
its odd multiples still appear as subscripts on the smaller 
s ide--necessari ly  so for reasons which have already 
been explained. However, there is one difference from 
the results of §§ 3.1 and 3.2 in tha t  now the highest 
multiple of H appears on the smaller side. 

3.4. Use of 1 _+ cos 0~. We introduce here a method 
which enables us to free ourselves from the restrictions 
imposed by the absolute-value signs in our sums. The 
idea can be applied in several ways and we begin with 
the simplest. Clearly, for every j ,  

1 Jr cos 0 >/0, 

and so, by Theorem B, 

[~n~(l+-c°sO~)~'/°'<'[~-ln~(l+-c°sO¢)fl] 
(3-12) 

if  0 < ~ < ft. Let us consider some applications. 
(i) I f  ~ = 1, fl = 2, we have 

n~. + Y, n~. cos 0j ~ ~ nj (1 + 2 cos 0~. + cos 2 0j), 
j=l i=1  j = l  

i.e. (1 +PB)2 ~< 1 + 2PH + ½ (1 +~ZH), 

i.e. Y~/~< ½ (1 + ~2H). 

Thus we are led back to the simple inequal i ty  (3-3) as 
a special case. 

(ii) Now consider a = 1, fi = 3. We get 

n~. (1 + cos 0j) ~< E nj (1 + cos 0~) 3, 
1 i=1  

i.e. (I+~H)3<.I+3_~H+}(I+Y2H)+t(Y t+3YR)  , 

i.e. ~aH + 3 P ~  -- }PH ~< ¼~a_~ + } (1 + ~'~.B). (3--13) 



(iii) Again take ~ = 2, fl = 3. Then 

n~ (l + cos 05) 3 < n 5(1+cos05) ~ , 
/=t i 

i.e. {1 + 2~H + ½ (1 +~H) ia  < {1 + 3~H + ~ (1 + ~.g) 

+~  (~SH+3~H)} ~. (3-14) 

In  this way we can get inequalities with odd multiples 
of H on the greater side. But there is a further extension 
possible. In the relation (3-12) we need not suppose 
that  ~¢ and fl are integers. In  the general case we can 
expand the binomials (1 + cos 05) ~ and (1 + cos 05)~ in 
powers of cos 05, express each power of cos 05 in the 
expansions as a linear combination of cosines of 
multiples of 05 , and in this way build up an inequality 
connecting the ~n~'s for various values of n. I t  is 
understood that, to the accuracy of this whole theory, it 
will rarely be necessary or even useful to retain more 
than the first few terms of the binomial expansions. 
Let us consider some actual cases. 

(iv) Take ~ = ½, fl = 1. Then 

i.e. 

i.e. 

n 5(1+cos05)½ ~< ~ n¢ (l + cos 0¢), 
1=1 1----1 

N 
n~ (1+½ cos 05-~  cos ~ 0 5 + ~  cos ~ 0~) 

j = l  

~< n~ ( l+cos  0~) , 

1+ ½ ~ - &  (1 + ~,~) + & (?.~ + 3 ~ ) . <  (1 +~)~  
1 2 = 1+ ½~'~- g~'~ + ~ ' ~ .  

Hence 41~H--81~t--3~H+4>~-~'aH--4P~H. (3--15) 

This rather complicated relation may be directly useful 
only in favourable circumstances, but we have quoted 
it here as an example of the type of relation which may 
be proved to suit special cases as they arise. 

3"5. Use of general f (05). In the last paragraph we 
N 

used ~ n~ (1 _+ cos 05)% However, the idea can be ex- 
j=l 

tended almost indefinitely. Take any even function 
f (0) which is positive in 0 4 0 ~< ~r and has period 2m 
We can then assert that  

N ~/a 

is an increasing function of a. Our next step is to 
expand {f (0)} a as a Fourier cosine series, thus expressing 

N 
Z n5 [f (05)] ~ 

i=1  

as a linear combination of ~n~/'s for different values of n. 
Then by comparing the values of the expressions for 
two values of a we get an inequality for the ~nH'S. In 
practice it will not be necessary to retain many terms 
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of the Fourier series, especially i f / (0)  is a sufficiently 
smooth function, and the final inequality will be 
correspondingly simplified. 

For example, we may assert that  

nhl cos½05 1 ~ < nhlcos½05 13 (3-16) 
j J 

But (Whittaker & Watson, 1927, p. 191), for all real x, 

8 I cos3 x I - - ~ { ½ + ~  cos 2 x + &  c o s 4 x -  ~-~ cos 6x...}, 
(3-17) 

and so (taking x = ½05) 

{' (l'4-~H)}½ <<- {~ (½-4-~It +-~5~2H)} ~' 

ignoring the higher terms, 
and hence 

(1 + pH)~ ~< 2.38 (½ +-~PH + ~_~H). (3--18) 

If  we had started with ] sin ½051 instead of I cos ½051, we 
should have got 

3 3 (1 _ zSH)~ < 2.38 (½- 5_~H + ~-~Pg.H). (3--19) 

Clearly (3-18) and (3-19) may be rewritten as 
3 (1 +[ -~H [)~ <2.38 (½+3[ PH[ -~3--5-t~2H)' (3-20) 

and (1__I_~H[)~<~2.38(½--~IP~I+~R~H). (3-20') 

In fact, if/~H > 0, (3-20) and (3-20') are simply (3-18), 
(3-19) respectively. On the other hand, if F H < 0, they 
are the same inequalities in the opposite order. 

These may give a sign for F2~ in cases where (3-3) 
fails. Suppose, for example, that  I F/~ 1=0"58, 
[ P~H I-0.28. Then (3-3) gives 

0.34 ~< ½ (1 Jr 0.28), 

and both signs satisfy the inequality. However, it may 
easily be verified that, to satisfy (3-20), we must have 
F~H > 0 though, incidentally, (3-20') could be satisfied 
by either sign of FgH. 

3.5. We conclude this section with some further 
results. Of these (3-21), (3-22) and (3-25) are due to 
Harker & Kasper (1948). We shall prove only (3-23) 
and (3-24). 

For a centro-symmetrie crystal: 

(z$~ +/~n,)~ ~< ( 1 ~-~H+H')(1 "~H-H')' (3-21) 

(I~H_~H,)z<<(1--~H+H,) (1 --/~H_H,),  (3-22) 

(_~H-4-1~H.)4<~ ~ (3 + 4/~H+H, + ~,rt+9.H') 

X (3+4P~-~'+-PgH-2H'), (3--23) 

× (3-42~__w-P~_~w). (3-24) 

For a crystal with space group P21/n: 

~0~t~<¼ (1_+i~0,~,o+_1~0.0,~+~0,~,~), (3-25) 

the ___ sign being taken according as k + l is even or odd. 
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Proof of (3-23). For this we require an extension 
of H61der's Inequali ty which says (Hardy, Littlewood 
& Pblya, 1934, p. 24)" 

I f  al ,  a~. . . . .  , a~; bl, b2, ..., b.; cl, Cz, ..., c, are any 
3n real or complex numbers, and p, q, r are three 
positive real numbers such that  lip + 1/q+ 1/r= l, then 

J =1 IP~ 1/p 

'~_-]1/~ 1']'/". (3-26) 

Now 
N 

~H+ IOH.= Y~ nj{cos 2rr (hx~+ky~+Zz~) 
1=1 

Take 

STRUCTURE-FACTOR RELATIONS AND PHASE DETERMINATION 

The proof of (3-24) is very similar, except that we 
now use the relation 

sin a 0 = ~ ( 3 -  4 cos 20--cos 40), 

and the rest goes much as before. 

+ cos 2~ (h'xj + k'y¢ + l'zj)} 
N 

=2  E n~ cos 7r [(h +h ' )  x j+  (k+ k ')y~+ (l+ l') zj] 
j = l  

x cos rr [(h - h') xj + (k - k') yj + (1 - l') z~]. 

a~=n~, bi=n ~ cos ~r [(h+h') x~+(k+k') yj÷(l+l ')  z~], 

c~ = n~ cos ~ [ ( h -  h') x; + ( k -  k') y~ + (1- l') zi] 

and p = 2, q = r = 4. Then 

1 x n~. cos 4 Tr [(h+h')  x~.+ (k+k ' )  y~+(l+l') zj] 
j = l  

x nj cos 4 7r [ ( h -  h') xj + ( k -  k') y~ + (1- l') zj] 
j = l  

= -~ n~[3+4cos27r((h+h')x~+(k+k')y~+(l+l')z~) 

+cos 47r ((h +h') xj+ (k+ k') yj+ (l +l') zj)]/i 
I 

x g ~ nj [3 + 4 cos 27r ((h - h') x~ + (k - k') y~ + (1- l') z~) 
( 1=1 

+ cos 47r ((h - h') x~ + ( k -  k') y~ + (1- l') zj)]} i 
2 

Here we have used the relation 

cos 4 0 = ~ (3 + 4 cos 20 + cos 40). 
Hence 

I P . +  PH. 1 [3 + 

× [3 + 4PH_~,, + t ' ~ _ ~ , ]  
and (3-23) follows. 

4. Conclusion 
4.1. I t  follows from the nature of the inequalities 

that  the bigger the value of [~H [ the greater our 
chance of deducing its sign. That  principle is subject to 
some qualification in detail, but is true in general. Put  
quite crudely, what it amounts to is this. The bigger the 
value of [ PHI the bigger the difference between + PR 
and -$ 'H ,  and so the better our prospects of being able 
to discriminate between the two analytically. 

4.2. The application of the Harker-Kasper relations 
and also some of those derived above has led to the 
correct determination of many signs for a number of 
known structures. In particular the data  on oxalic 
acid obtained by Robertson & Woodward (1936) have 
been examined in detail. In this case it was possible to 
find directly the signs of some forty-two of the hO1 terms. 
A fuller account of this work will be published later. 

The practical consideration of these problems has 
suggested an interesting observation. There were a 
number of cases in which both signs satisfied the in- 
equality, one of them by a comfortable margin and the 
other by only a relatively small margin. In almost all 
such cases it was the former sign which was the correct 
one. That  suggests that  the method may have some 
power in reserve, in the sense that  there are still 
fundamentally stronger inequalities to be discovered. 

4-3. We have not considered any symmetry elements 
other than the centre of symmetry.  However, to each 
such element corresponds a complete theory like tha t  
developed in § 3. For the general idea behind such 
a development the reader should consult the paper of 
Harker & Kasper. 

I should like to express my gratitude to Prof. 
Fankuchen and his staff at the Polytechnic Inst i tute 
of Brooklyn. I t  is to the kind and helpful hospitality 
shown me there tha t  I owe my first real introduction to 
this fascinating subject. 
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